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Figure 1: A connected office as seen in the augmented reality and virtual reality modes of XRShark.

ABSTRACT

As devices become increasingly mobile and wireless, the last-meter
network monitoring problem continues to grow. Network intro-
spection tools will need to support an up-to-date operating picture
of dynamic networks, show the physical locations of all network
nodes, and connect low-level spatial characteristics with the higher
layers of the network stack. Such insights are poorly supported
by existing tools that abstract away the physical reality of the
underlying network. Fortunately, recent advances in localization
technologies and mixed reality platforms provide an opportunity
for a new approach: mixed reality network introspection. Mixed re-
ality allows users to see network traffic situated directly in the real
world. Physical situation of network activity supports an intuitive
understanding of room-scale networks by harnessing human spatial
intuition and visual processing, which is well-suited to rapid identi-
fication of unexpected activity and correlations in three dimensional
space. We propose design goals and a general architecture for mixed
reality network introspection, and implement a prototype called
XRShark, a network visualizer with augmented reality and virtual
reality modes. XRShark enables us to identify several behaviors
of the local networks that would be difficult to detect using tra-
ditional tools. Based on our prototyping experiences, we discuss
promising directions for mixed reality network introspection, as
well as remaining challenges for the system design and interaction
semantics.

1 INTRODUCTION

Wireless packet networks have existed since the debut of ALO-
HAnet in the early 1970s, but recent decades have seen them be-
come truly ubiquitous. Advances in transceiver hardware have
driven an explosion of wireless technologies, such as Bluetooth
Low Energy, WiFi, and several generations of cellular networks.
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As 5G and LPWAN infrastructure roll out, the wireless expansion
shows no sign of stopping.

While networking technologies have evolved over time, many
of the staples of the modern network debugging toolbox would be
familiar to early network pioneers. These tools are dominated by
text-heavy readouts well-suited to the terminal, such as tepdump,
traceroute, and dig [27]. Many subsequent tools have inherited
from these spiritual predecessors, such as the Wireshark packet
analyzer with its text-heavy tabular views and filters [30]. Later
came network topology graphs and 2D maps that despite their
graphical nature remain abstracted from the physical space.

These tools may suffice for networks that primarily consist of
large, static, or wired hosts, but the landscape has changed. The
growth of wireless technology has developed hand-in-hand with
a proliferation of network-connected devices, many of which are
embedded, mobile, proximal, or cyber-physical systems. Modern
local networks are therefore often highly dependent on spatial rela-
tionships that may change from moment to moment. Maintaining
a real-time understanding of this kind of dynamic networking en-
vironment will require new tools that support rapid, intuitive, and
physically grounded insights into real-time network activities.

Recent years have also seen the emergence of consumer-grade
augmented and virtual reality platforms and commercially avail-
able localization systems that can track objects in 3D space with
decimeter accuracy. With these advances, we can now do what we
could not-and indeed, did not have to do-before: visualize wireless
network phenomena situated directly in physical space.

We propose that the time is now ripe to explore mixed reality
network introspection, a new way of understanding networks that
yields serendipitous insights that have so far been poorly supported
by existing network monitoring and debugging tools. Existing tools
require users to know what they are looking for, and require time
and mental effort to translate symbolic representations into an un-
derstanding of what happened. However, by helping users literally
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Figure 2: Modern network management tool displays.

see network traffic, we can leverage human sensory processing,
which is tuned to reflexively notice patterns and unexpected ac-
tivity in three-dimensional space. This approach could allow even
casual users to quickly detect unexpected activity, build an intuitive
impression of activity across the network, and understand how the
physical layer is impacting higher-layer networking behaviors.

In this paper, we introduce design goals and a general archi-
tecture for mixed reality network introspection. To validate the
essential system capabilities and user experience, we build a proto-
type called XRShark. We use XRShark to monitor and visualize a
smart office with wireless sensors and actuators connected via WiFi
(802.11) and OpenThread (802.15.4) mesh networking. We describe
the rationale behind XRShark’s implementation choices, report mi-
crobenchmarks to validate the semantics, and share examples of
the unique network insights that XRShark can provide. We close
with a number of remaining challenges to drive future research in
this promising direction.

2 BACKGROUND AND RELATED WORK

A number of recent works in network introspection, mixed reality
for networks, and device localization have hinted at this direction
in bits and pieces. Together, they suggest a confluence of forces for
which mixed reality network introspection is the natural next step.

2.1 Network Introspection

Several notable works have focused on designing network infras-
tructure for visibility. X-Trace is a framework that provides a com-
prehensive picture of multi-layered and inter-operating networked
services for the purposes of root cause analysis [12]. By embedding
metadata throughout a system, X-Trace is able to capture relation-
ships and data flow between several different network layers.

Networks of embedded systems have similar debugging needs,
but critically, there is an energy cost to both visibility and diagno-
sis [29]. While making metadata visible costs energy in low-power
sensor networks, so does debugging. Consequently, Wachs et. al.
claim that protocols should “minimize the energy cost of diagnos-
ing the cause of a failure or behavior,” and propose several formal
metrics for evaluating protocol optimality.

There is a significant body of work focused not just on how
to collect network information, but also on how to visualize it in
ways that help users accomplish tasks. To aid embedded applica-
tion debugging, WiFrost addresses the problem of linking together
code execution with network behaviors in an embedded system
context [19]. Showing correspondences across different layers and
different domains is key for debugging many networked and em-
bedded applications. Security professionals are also particularly
interested in visualizing network information in ways that help
humans identify anomalous patterns and malicious actors [8, 13].

2.2 Mixed Reality for Networks

The last few years have seen key pieces of research applying aug-
mented reality to networked embedded systems. EyeSec is an aug-
mented reality network introspection tool developed to help trou-
bleshoot wireless sensor networks in the field [26]. The system
architecture focuses on easily deployable sniffer modules that may
be limited in what they can access, but can be retrofit to already
deployed sensor networks. Device localization is performed by a
smartphone using QR codes, and the phone also runs the AR visu-
alization. The interface shows information tiles over each QR code
enabled device, and the thickness of arrows between device tiles
represents the total number of packets recently sent.

EyeSec addresses a number of the same challenges that we do,
but limiting the visualization to just augmented reality misses the
opportunities that virtual reality provides for remote monitoring
and review of historical data. The semantics of augmented reality
clash with replay of historical data, and the user must physically
travel to the site to use the interface. The addition of a virtual reality
mode, like we provide in XRShark, supports replay of historical data
in its physical configuration, and the ability to perform real-time
debugging remotely.

Other projects have used mixed reality to interact with smart
devices at the application level. MIT’s DoppelLab uses VR to view
sensor data in virtual twins of smart buildings in real time [11].
Smarter Objects enables programming of Internet of Things by
drawing connections between devices in augmented reality [14].
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There has also been an interest in using mixed reality interfaces
to visualize network information in the commercial world. For ex-
ample, SeeSignal is an augmented reality product for visualizing
spatial RSSI data [6]. However, SeeSignal only provides a static view
of an RSSI map, and does not display any other network behavior
or information. Splunk, an analytics company, has prototyped aug-
mented reality interfaces that display system resource information
on server racks in data centers [16].

2.3 Localization of Network Devices

To automatically localize and visualize traffic from network de-
vices requires both pinpointing the location of each device and
mapping each localized entity to its network identity. Anchor-and-
tag localization systems like Harmonium [15] can address the first
goal, but require manual effort to achieve the second. Tag-free lo-
calization solutions like ALPS [17] or the commercially available
Quuppa [24], which use Bluetooth Low Energy radios, could po-
tentially achieve both goals. Because the radio used for localization
is already integrated into the tracked device, it is easier to auto-
matically associate the localization and network identities of the
device. Camera-enabled devices can use computer vision to local-
ize themselves within the space, but may have difficulty sharing
that location in a global coordinate system that other devices can
understand. Camera-based solutions also do not generalize well to
other types of network devices.

For situations where the visualization system is a smartphone,
VisloT converts the problem into an easier to solve domain by lo-
calizing a broadcasting network device directly onto the correct
screen pixels on an augmented reality smartphone, using a combi-
nation of vision and RF information [23]. However, this approach
creates dependencies between the localization and visualization
components that reduce the modularity of the system.

3 ARCHITECTURE FOR MIXED REALITY
NETWORK INTROSPECTION

To achieve our vision of physically grounded and serendipitous
insights, the architecture for mixed reality network introspection
must achieve a number of design goals. These goals have implica-
tions for each of the four main architectural components: network
instrumentation, localization, representation, and visualization.

3.1 Design Goals
A mixed reality network introspection system should:

e Support multiple network representations.

e Show interactions between network layers.

e Have well-defined time semantics.

e Have well-defined location semantics.

e Enable quick filtering.

e Support “here-and-now” temporal and spatial synchrony.

e Support historical/remote temporal and spatial asynchrony.

There are a number of different representations used to con-
ceptualize networks, including tabular, topological, and physical
models. Each of these representations are appropriate for different
tasks. Mixed reality is particularly suited to emphasizing activity
related to physical aspects of the space, but the system should still
allow users to augment their understanding and structure their
exploration with these other views.

Networks are also multi-layered, and the characteristics of the
physical layer may have impacts on the link layer and IP layer.
Additionally, different layers are relevant to different tasks. Users
should be able to switch between views of these layers and see the
correspondences between them.

The time semantics of the interface should accommodate both
real-time and historical data. When viewing real-time traffic, accu-
rate timing is critical. However, with historical data, it may some-
times be more useful to step through one packet at a time, with
greater emphasis on the sequence of events rather than the timing.

The location semantics of device placement will need to convey
the accuracy, precision, and freshness of the location information.
Not all network devices may be physically localized in space, and
the difference must be clear.

The system must allow users to quickly construct, apply, and
remove filters to avoid becoming overwhelmed by the firehose of
data. Users should be able to quickly highlight only those things
they are interested in.

Finally, the system should enrich the environment when the user
is physically present at the site, but it should also allow the user to
access the site remotely. Viewers should be able to have meaningful
real-time insights, but also be able to review historical data as part
of their investigations. This means supporting both synchrony and
asynchrony in the spatial and temporal domains.

3.2 Architecture

The main architectural components of mixed reality network intro-
spection and their relationships are shown in Figure 3. Though each
component encompasses a large space of possible implementations,
the design goals introduce a number of important considerations.

3.2.1 Network Instrumentation. The network instrumentation will
need to capture information from a number of different layers,
including the physical, link, and network layers. Where this in-
strumentation should sit depends on the topology of the network,
the needs of the application, and the ability to access the routing
infrastructure.

Collecting high-layer information is especially reliant on topol-
ogy. Star networks can often be monitored from a single point, if
you have access to the central router. Traffic to and from a mesh
network can also be intercepted just from the border router, but
to capture intra-mesh communications would likely require mod-
ifying each mesh router. Monitoring peer-to-peer networks like



Bluetooth Low Energy would require either expensive sniffers or
the modification of a least one of the participants.

In cases where the infrastructure cannot be modified, network
clients can still make a best-effort case to see what they can see.
However, this limited perspective and the possible presence of
undetected activity should be conveyed to the user.

Collecting physical layer information about the space is difficult
and likely requires deploying RF measurement devices. While pro-
viding a comprehensive real-time map of the RF spectrum might
impose significant infrastructure costs, to help users achieve nar-
rower goals such as gateway placement, spectrum management,
and wireless troubleshooting, we could potentially capture the rel-
evant information with significantly fewer sensing points.

The network instrumentation must support both real-time vi-
sualization and historical replay. Capture must be fast enough to
avoid falling behind real time, with small enough overhead to avoid
negatively impacting the network. Replay requires the ability to
store and retrieve captured data. Many existing tools, like Wire-
shark, allow user-initiated packet captures. However, to support
serendipitous insights about unexpected transient behavior, the
instrumentation system will need to be able to replay data that
the user did not know to record in advance. This can be achieved
by keeping a data buffer for replaying events that just occurred,
and periodically off-loading local packet capture data to long-term
storage.

3.2.2 Localization. Capturing the basic shape of the room is im-
portant for orienting users and device locations within a digital
twin of the space. The room model can be easily parameterized
as the dimensions of a rectangle or other basic shapes, potentially
with the locations of key landmarks like doors and windows.

In Section 2, we discussed a number of possible methods for
localizing devices within the room. Despite their different charac-
teristics, these approaches may end up combined together into one
visualization, making it particularly important for each localiza-
tion system to convey the quality of the data in terms of accuracy,
precision, and freshness.

3.2.3 Representation. Information from the network instrumenta-
tion and localization systems should be synthesized into a model
that represents the known state of the instrumented network(s).
This model would include up-to-date locations and other associated
metadata for each network device. A standalone representation
service would allow multiple different visualization applications to
access the same data.

3.24 Visualization. Visualization must balance both exploration
and exploitation. A key postulate of our vision is that mixed reality
visualization naturally supports exploration and serendipitous in-
sights by bootstrapping off of human real-world spatial intelligence.
However, to support at-a-glance awareness of overall network ac-
tivity, there are a number of aspects in which the semantics of the
visualization should be carefully considered.

First, the placement of network hosts in the visualization should
reflect the quality of the location information, including uncertainty
and freshness. There will also likely be physically present devices
whose locations are not tracked by the system. Other network hosts
may not have a meaningful physical presence at all, such as those in
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the cloud. All of these entities will need to be visualized physically
in a meaningful way.

Second, the semantics of viewing packets in real-time, when
packets travel at the speed of light, presents a non-obvious funda-
mental challenge for any animated representation of packet trans-
mission. Packet visualizations with any transit time (such as a ball
moving from one host to another) end up violating rules of causality
in the physical space, because the response to a packet may be sent
before the original packet has been visually “received.” To better
match real-time packet semantics, we suggest representing packet
transmission by the instantaneous appearance of a line between
two end points. We discuss this in greater detail in Section 5.4.2.

For maximum utility, exploration must be complemented by
exploitation. When potentially interesting behavior has been iden-
tified, the platform must allow for narrowing the scope and deeper
investigation. This means allowing users to quickly filter their views
to focus on relevant information.

Allowing users to switch between viewing different network lay-
ers, or switching between different models, can be done in a number
of ways, such as by borrowing the mechanics of layer interaction
from photo editing software, or a magic lenses metaphor [7, 9].

Enabling users to quickly construct and apply filters, however,
is a difficult interaction design challenge. Many desktop tools use
heavily text-oriented filters, which does not translate well into
many AR and VR interaction systems. Mixed reality systems do sup-
port other modalities, such as direct manipulation and occasionally
speech input, gaze detection, or pointing, presenting opportunities
for novel ways of constructing and applying filters.

Finally, the visualization needs to support real-time uses, but
should also support historical review of data. Similarly, the visual-
ization needs to support real-space uses, but should also support
remote viewing of data. While augmented reality is valuable for
seeing the interaction between the environment and the devices, it
requires the user to be present in the space and may cause confusion
during replays. Any mixed reality network introspection system
should also include a VR mode that supports review of historical
data or viewing an instrumented site remotely.

4 XRSHARK PROTOTYPE

To explore the potential of mixed reality network introspection,
we prototyped a tool called XRShark. Our goal in creating the
prototype was three-fold: 1) to test the feasibility of the end-to-
end system, 2) to explore the time and location semantics, and 3)
to verify whether the user experience could provide unexpected
and serendipitous insights. XRShark implements each of the key
architectural components, as well as the core time and location
semantics.

We deployed XRShark in a real-world connected office that con-
tains low-power environmental sensors, smart lights, and several
laptops, phones, and tablets. The environmental sensors are con-
nected via a low-power OpenThread (802.15.4) mesh network with
several mesh routers located in the room, and the remaining devices
are connected via WiFi (802.11).

The sensors and smart lights are components of a distributed IoT
application in development by embedded engineers. The sensors are
custom environmental sensors that provide temperature, humidity,
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brightness, and PIR-based motion detection. The smart lights are
commercially available WiFi-connected lights from LIFX [18]. The
embedded developers wrote an automatic brightness controller
program that dims and brightens the lights to maintain desired
brightness levels throughout the day. In addition to brightness
readings, the application also uses the sensors’ motion detection to
automatically turn the lights on and off.

Initial discussions revealed that the embedded developers were
particularly interested in visualizing the Thread mesh network. This
would help them verify the correct operation of their OpenThread
firmware implementation and help them adjust router placement
to improve load balancing. They were also interested in seeing
what office activities triggered the brightness and motion detection
thresholds on the sensors, and in following the flow of data across
the many links in the distributed application as it operates.

4.1 Network Instrumentation

The network structure of the smart office, shown in Figure 4, is
somewhat complex, containing a star network (WiFi) and a mesh
network (Thread) connected through cloud-based services. How-
ever, only a few modifications and additions were necessary to
capture all WiFi traffic and all cloud-bound Thread traffic.

As a star topology, the WiFi network was simple to instrument.
The WiFi router uses OpenWrt firmware [22], a Linux-based sys-
tem that allows the use of tcpdump to capture packet data [27]. As
represented in Figure 5, we developed a Raspberry Pi-based ser-
vice that runs tcpdump directly on the router, receives the results
through Secure Shell (SSH), and sends a message containing the
packet information to a cloud-based broker via MQTT, a publish-
subscribe network protocol [20]. This enables remote monitoring
of the network activity. Our sniffer program has an interface for
accepting packet filters. While pushing filtering into the capture
infrastructure is a useful option for reducing network overhead, it
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would not be possible to change the filters on historical data. We
always captured all packets that passed through the router.

Capturing the relevant Thread information was more compli-
cated. While every sensor’s data messages are sent to the cloud,
the cloud cannot see what route the packet takes through the mesh
network, which is what the embedded researchers were interested
in visualizing. To keep the network overhead and firmware modifi-
cations minimal, we decided to take a synthetic approach where
we retroactively determine the route each packet must have taken.
We illustrate this process in Figure 6. The low-power sensors were
modified to report the Thread router ID of their first hop in the
network, and the wall-powered Thread routers were modified to
report their routing tables upon infrequent intervals and upon any
changes. We authored cloud-based services that monitor these mes-
sages and maintain a global picture of the topology. Each time a
data message is received by the cloud, a packet synthesizer uses
the current topology to determine what hops the packet must have
taken through the mesh to reach the border router, and synthesizes
a packet per hop that the XRShark Unity app then visualizes.

While the approach we took for capturing the Thread network
imposes very little overhead on the Thread devices, its retroactive
nature means it cannot detect cases when the actual behavior differs
from the reported routing tables. It also cannot capture traffic local
to the mesh. However, mesh-local packets could potentially be
captured by modifying just the wall-powered routers to forward
duplicates to a cloud endpoint, with some measures in place to
prevent double-counting.

4.2 Localization

Most of the in-room devices are largely static. However, the smart
lights could be controlled over the local network using a smartphone
or tablet, so it was also important to be able to track the physical
location of mobile network hosts.

Most of the static locations were determined by measuring real-
world locations relative to a corner of the room with a measuring
tape or laser range-finder. This manual process could be drastically

Figure 7: Decawave localization system. To localize mo-
bile devices, we used the commercially available Decawave
MDEK1001 kit, which provides decimeter accuracy at 10 Hz.
Left to right are depictions of anchor, tag, gateway, and mod-
ule. The UWB module is small and could be integrated into
smaller tags. Four anchors covered a 15.5m x 4.5m room.

sped up by supporting user placement of digital devices within
the visualization. In augmented reality, users could raycast any
automatically detected network devices to correct positions around
the room. Various analytics could help aid the user in mapping a
device’s network identity to its real-world identity.

To track the dynamic locations of mobile devices, we integrated
a tag-based real-time locating system (RTLS) into XRShark. As
shown in Figure 7, we used the ultra-wideband (UWB) Decawave
MDEK1001 commercial off-the-shelf localization system [10], which
costs $299 for 12 nodes (about $25 per node). Four nodes can be
configured to act as wall-powered anchors covering the whole
room, and one is converted into a permanent gateway. The gateway
exposes location data for each tag and anchor through alocal MQTT
broker. The tags can be battery powered and provide a 10 Hz update
rate with typically sub-decimeter accuracy. The actual Decawave
module providing the localization is about the size of a U.S. quarter.

Recent flagship smartphone models, including Apple’s iPhone
11 and Samsung’s Galaxy S21+, S21 Ultra, and Note20, are all UWB-
enabled, suggesting a promising future for adoption of UWB lo-
calization technologies [5]. However, the localization interface to
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XRShark allows the UWB system to be replaced with any localiza-
tion method able to provide three-dimensional coordinates.

4.3 Representation

In our implementation of XRShark, the representation for the net-
work is a collection of manually crafted lookup tables included as
a file in the XRShark Unity application. These tables include the
mappings of localization tags to network identities, network identi-
ties to locations, network identities to human-readable labels, and
network identities to type information (such as Thread or WiFi).
Though most of these entries are manually generated, some are also
dynamically updated. For example, the Unity application receives
MOQTT messages containing location information for tags in the
UWB localization system, and updates the location for the corre-
sponding network devices accordingly. Additionally, whenever a
Thread or WiFi packet message arrives via MQTT, if one of the
endpoints has never been seen before it is automatically added to
the appropriate lookup tables.

Though this representation of the local networks is currently
maintained by the Unity application, in the future we expect this
functionality to reside as a separate network-based service. Much
of the information contained in the lookup tables, such as mappings
between network identities and names, is duplicated and kept up-
to-date manually in multiple applications running in the connected
office, including the brightness controller program. By separating
the network representation into its own standalone lookup service,
all of these applications can benefit from a centrally maintained
and automatically updated metadata store.

4.4 Visualization

XRShark visualizes the network and localization information using
a Unity application that runs on a HTC Vive Pro headset. While
the Vive Pro is primarily designed for virtual reality, it also has
front-facing passthrough cameras that enable augmented reality.
The application runs on Unity, a cross-platform game engine with
extensive support for three-dimensional software development [28].
As seen in Figure 1, XRShark provides two modes, augmented
reality and virtual reality, which users can toggle between. In each
mode, wireless devices are indicated by large balls of light and
labeled with an ID. The WiFi devices and cloud endpoints are all
blue, and Thread devices are green. In implementing XRShark we
explored solutions to a number of challenges concerning the loca-
tion semantics of host placement, the time semantics of displaying
real-time traffic, and how to visualize different network layers.

4.4.1 Host placement. In virtual reality, the room is represented
by four black walls of real-world dimensions with outlines of doors
and windows to provide orientation landmarks. Devices on the
local networks are either placed in their physical locations around
the room, or, if the location is unknown, embedded randomly in
the floor (Figure 8). When updating mobile device locations, the
visualization applies exponential smoothing to reduce visual jitter.

In the case of a less precise localization method, node placement
could still incorporate whatever information is available. For ex-
ample, placement in the floor plane could be biased towards one

side of the room or the other depending on signal strength. How-
ever, the difference between this meaningful placement and random
placement would need to be indicated to the user somehow.

Internet-based hosts are placed randomly in the cloud, an ac-
tual overhead plane filled with misty vapors (Figure 9). While the
cloud layer can be seen from below in both AR and VR modes, in
virtual reality users can fly up to and teleport around the cloud,
and look down upon the local network. This vantage point is often
convenient for observing the mesh network topology (Figure 11).
Random placement could be improved upon by co-locating internet
hosts with similar IP addresses.

4.4.2 Time Semantics. A significant challenge that we addressed
in our interaction design was how to display real-time network
traffic when real packets travel at the speed of light.

We initially represented packets simply as small balls of light
traveling from sender to receiver. However, upon first viewing
real-time traffic, we immediately discovered that the visualization
violated rules of physical causality due to the transit time of the an-
imation. Specifically, a second packet could be released in response
to a first packet while the first packet was still visually traveling
through the air, having yet to arrive at its destination. This made
the semantics of network interactions difficult to understand.

This happens because real packets travel so fast that they are
essentially received as soon as they are sent. A traveling ball with
such a property would never be seen, since it would be immediately
arrive at its destination.

These “instantaneous” semantics are more accurately depicted
as the appearance of a line connecting the two end points. As soon
as the line appears between two network entities, it means a packet
was just sent and received in that instant. In XRShark the line fades
over a user-configurable amount of time to capture a sense of recent
history, and in particular, bandwidth. The more packets that are sent
between two entities, the more lines appear, eventually resulting in
a pipe structure. Users can get an idea of relative bandwidth usage
over the time window by visually comparing how many lines are
between various entities.

When a line appears, a particle also emanates, traveling from
source to destination. While line appearances represent real-time
packets, the balls provide a sense of recent history. The movement
makes directionality clearer and make certain traffic patterns easier
to notice. In particular, the balls illustrate how far apart in time the
packets were sent, displaying temporal patterns that columns of
lines do not.

The time window for retaining lines and particles can be manip-
ulated using the touchpad on the Vive Pro controllers. Adjusting
the time window causes the lines to fade and the packet particles
to speed up or slow down as necessary to complete their transits
within the selected time. This mechanic means that at any point,
users know that all visible traffic was sent within the time window
indicated by the controller readout (usually set between three and
30 seconds). Users can also completely pause playback, freezing
packets in mid-air. We have begun to experiment with allowing
users to reveal payload information for individual packets.

A color gradient along the length of each packet line also indi-
cates directionality, so that directionality can still be seen when
particle movement is paused using the time controller.
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(b)

Figure 8: Local host placement. Local devices are placed in a digital twin of the room using location information provided by
the system representation. Green orbs represent Thread devices, and blue orbs represent WiFi devices. If the physical location
of a local device is unknown, then it is embedded randomly in the floor (a). Device locations are updated each time step,
reflecting the latest localization information. In (b), as the smartphone moves, packets sent to it from the WiFi-enabled smart

lights follow the phone’s location.
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Figure 9: External host placement. Internet-based hosts are placed in a literal cloud layer above the room. In VR mode, the
user can travel between the local and cloud planes and teleport to different locations.

We also found that the best way to display packets may differ
between real-time and replay modes. During early development
we tested the visualization by replaying short packet captures. We
found that when replaying a capture, sometimes users care about
having accurate timing information, but sometimes users primarily
care about event order. To understand a particular conversation or
protocol, users may prefer to step through each individual packet
one at a time, preserving the sequence while ignoring timing infor-
mation. Understanding the benefits of these different modes and
when they should be available to users remains an important open
question for interaction design.

4.4.3 Layers. We decided to visualize different network layers for
WiFi and Thread. For WiFi, we were interested in seeing the end-to-
end IP connections, so packet lines were drawn directly between IP
source and destination, bypassing the WiFi router. For the Thread
network, we were interested specifically in the mesh behavior, so
instead of visualizing the end-to-end IP layer connections between
the sensors and the cloud, we visualized each of the link-layer hops
through the mesh (Figure 11). However, in some situations it may
be more appropriate to visualize the link-layer connections of a

WiFi network, or the IP-layer connections of a Thread network.
The ability to switch the view between these layers as desired for
each network would be useful.

The semantics of a packet animation may change depending
on which layer is currently being viewed. For example, Figure 12
shows an animation we created for UDP broadcast packets. UDP
broadcast packets are sent to a special broadcast IP address, which
causes the router to duplicate the packet and send a copy to all
connected devices. This is a logical broadcast action in the IP layer,
but is not a broadcast in the physical layer. The expanding shell
animation acts as a good metaphor for UDP broadcast, but it may
imply physical layer behavior that is not accurate.

5 XRSHARK EVALUATION

To evaluate whether XRShark can support well-defined semantics
and serendipitous insights, we examine a key microbenchmark and
provide several illustrative case studies.
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Figure 10: Controller in time mode adjusts history window.
The appearance of a line indicates that a packet was sent and
received in that instant. Each line also is associated with a
small particle that travels from the sender to the receiver
within an n second time window. While line appearances
represent real-time packet activity, the balls indicate how
many packets there have been in the last n seconds and
how far apart in time they were sent. Using the controller
to shrink or grow this retention window causes the packet
particles to slow down or speed up their movement to com-
plete the transit before disappearing.

Figure 11: Looking down from the cloud. A bird’s eye view
of the network is useful for seeing topologies, such as the
OpenThread mesh traffic shown in green. The blue lines are
traffic between the LIFX cloud and the LIFX-brand smart
lights in the room. As the room lights are manually dimmed
from the cloud, the sudden change in brightness triggers the
environmental sensors to report the new readings to a re-
mote service.

5.1 Lip-Sync Error

It is critical for the real-time semantics of the visualization that
activity be displayed shortly after it occurs in real life. Figure 13
shows an example of a streaming connection that might cause the

the visualization to fall behind real time while it processes all the
packets. We call this delay in real-time rendering the lip-sync error.

The key factor contributing to lip-sync error is not bandwidth,
but rather the number of individual packet models that the visu-
alization must animate each time step. We examine how lip-sync
error grows over time at different packet rates and show the results
in Figure 14. We synthesized MQTT messages representing WiFi
packets between two devices in the room. We sent these messages
at various fixed rates between 100 and 1000 messages per second.
Upon processing each packet message, the Unity app compared the
difference in elapsed time since the first packet according to the
visualization time, and the elapsed time since the first packet ac-
cording to the original packet timestamps. The difference between
these elapsed times is the lip-sync error in that moment. While it
is not yet clear what degree of lip-sync error users can tolerate in
this application domain, we highlighted the one-second line as an
plausible maximum threshold.

We found that any number of packets below approximately
210 packets per second stayed within the processing resources of
the system and accumulated no error over time. However, higher
packet rates resulted in the visualization falling further and further
behind, creating a backlog that the system needed to process before
catching back up to real time. Concretely, this means that watching
or listening to streaming media for even a short period would
effectively halt the ability to use the tool for real-time visualization
as it becomes tied up processing the stream.

However, by using the same measurement technique we used
for benchmarking, the visualizer can detect when lip-sync error
has accumulated and take steps to mitigate it. For example, the
visualization could switch to rendering a single stream instead of
many individual packets, or it could begin dropping packets in an
attempt to fast-forward to real time. We these techniques in mind,
we remain optimistic about the feasibility of using mixed reality
visualizations to view high-fidelity network traffic information in
real time.

These results are also heavily influenced by the underlying hard-
ware running the visualization application. We used a dedicated
VR laptop with an i7-8750H processor with a 2.20 GHz base fre-
quency and a 4.10 GHz high-performance frequency, 32GB of RAM,
and a NVIDIA GeForce GTX 1070 GPU. Underlying performance
management algorithms may explain why the difference in error
between 750 and 1000 packets/second is less than the differences at
lower packet rates.

5.2 Case Study: Lighting Control Application

Using XRShark’s augmented reality mode, the embedded researchers
were able to see the different components of their highly distributed
lighting control application working together to make the lights
dim or brighten. They were also able to see the WiFi lights syncing
local changes with the LIFX cloud after most of the controller’s
incremental adjustments—an externality of the control system not
originally factored in to the network overhead.

In AR, the researchers could see what stimuli, such as people
walking across the room, would trigger motion or brightness pack-
ets from sensors. The sensors are thresholded to send packets in
response to significant changes, and also have a refractory period
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Figure 12: UDP broadcast packets. Broadcast packets appear as an expanding shell, emerging from the sender.
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Figure 13: Netflix streaming traffic. A high-bandwidth
stream like this can cause the visualization to fall behind
real-time as it renders each packet in the stream.

during which they will not report changes again. The researchers
were able to build an intuition for the responsiveness of the sensors
that would have been difficult to get from terminal readouts. They
could also see that nearby desks’ sensors were also occasionally
triggered by a light’s changes, which is easy to forget when design-
ing controls with an idealized sensor-light pair in mind. Broken
sensors also became much easier to identify in AR. If users put their
hand over a broken sensor, they could see it did not send anything.

The ability to accurately visualize smartphone locations was
useful because the researchers often triggered the control loop’s
corrective behavior by manually dimming or brightening the lights
through the LIFX smartphone app. Figure 8b shows a still from the
AR mode as a person walked around the office with a tracked phone.
The volume of traffic was caused by opening the LIFX app, which
discovers and collects status information from all of the local LIFX
smart lights. The packets smoothly followed the person’s phone as
it moved.

5.3 Case Study: Mesh Topology Monitoring

The virtual reality mode allowed the researchers to make an in-
teresting discovery about the Thread mesh topology. Initially, by
looking down on the local network from the cloud and dimming all
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Figure 14: Lip-sync error. If the visualization cannot pro-
cess packet messages quickly enough, over time the delay
between when a packet was sent and when it is rendered in
the visualization grows. In our implementation, lip-sync er-
ror accumulates when processing more than 210 messages
per second. To combat this, if the system detects that the lip-
sync error has exceeded a particular threshold (such as one
second) it could take steps to catch back up to real time.

the lights to trigger all the sensors to send packets simultaneously,
the researchers were able to view the Thread mesh topology and
confirm that the routing was working as expected. At some point,
a power outage occurred in the building, and the virtual reality
view showed that the Thread mesh topology reformed inefficiently.
Perhaps due to the mesh routers rebooting at staggered times, many
sensors were bypassing nearby routers and sending packet to dis-
tant nodes. This configuration worked but was suboptimal. Using
XRShark, we watched the Thread mesh topology correct itself over
the course of a day.
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Figure 15: Example behaviors seen in XRShark. Clockwise from top-left: Address Resolution Protocol (ARP), Netflix streaming
from the cloud, Thread mesh routing, and LIFX smart lights synchronizing with the LIFX cloud above the room.

5.4 IoT Device Trust

We found that Amazon’s smart speaker, the Echo Dot [2], is dor-
mant unless it is spoken to or it is streaming music. This kind of
visibility into IoT device activity could potentially help build trust
with users, an especially important consideration for devices that
collect sensitive data with embedded microphones or cameras.
Additionally, we discovered that iOS devices with the LIFX app
will periodically perform discovery and sync with LIFX lights over
the local network even when the app is completely closed, likely due
to integration with Homekit, Apple’s smart home framework [4].

5.5 Serendipitous Discovery

While viewing traffic from Netflix, the popular video-streaming
site [21], we discovered that streaming one TV episode produced
two large connections to separate IP addresses. We also discovered
that in our facility, Netflix content is not served by a Netflix IP
address, but instead an aggregator node on the statewide regional
research network (previously unknown to us) that connects educa-
tional institutions to the Internet backbone. We were pleased and
surprised to learn more about our public network infrastructure.

We saw a very large beam emanating from a laptop one day,
resembling streaming media, but unaccounted for. When we later
went to shut down the laptop, it announced that a software update
was ready.

During a demo of the system, an untrained observer pointed
out a connection between a laptop and the cloud that was notable
for its high frequency and regularity and asked what it was. By
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checking which process was bound to the outgoing port and the
registered owner of the cloud IP, we determined that it was Slack, a
web-based messaging platform [25], polling an instance of Amazon
Web Services. We later confirmed that Slack does, in fact, run on
AWS [1]. Because XRShark presents network activity so intuitively,
an untrained observer was able to spot a pattern and prompt an
investigation that resulted in new discoveries about our digital
environment.

6 OPEN CHALLENGES

Further research must be conducted to understand the trade-offs in
modification effort, network overhead, and fidelity when it comes
to instrumenting different kinds of network topologies, including
peer-to-peer technologies like Bluetooth Low Energy. How well do
these approaches scale? How robust are they to node failures or
high latency transmissions? A systematic characterization of the
infrastructure design space for mixed reality introspection would
be highly informative. In addition, a number of open challenges in
this area remain.

6.1 Active Probing

Multiple testers of XRShark expressed an interest in crafting and in-
jecting packets into live networks while they are in the headset. This
feature has interesting implications for the design of the network
instrumentation infrastructure. Should packet injection capabilities
be coupled with monitoring services? When and where should



additional services or even special-purposes devices be added to a
network for packet injection? How can we do so safely?

6.2 Physical Layer

Another feature requested by multiple testers is visualizing real-
time information about the RF spectrum, particularly for inform-
ing gateway placement and understanding wireless coverage and
performance. Physical layer information is also critical for under-
standing packet loss and interference. However, collecting this
information in a scalable way is a challenge.

6.3 Security and Privacy

The question of how to address the security and privacy concerns
raised by collecting and exposing a comprehensive picture of local
network activity (and potentially supporting packet injection) re-
mains a major unresolved problem. Implemented insecurely, each
component of the introspection system could potentially open the
network to observation or even active attack. Encryption and a
thoughtful access control scheme are absolute requirements. One
potential solution is to use a high-performance publish-subscribe
system designed around a decentralized access control framework
like WAVE [3], which would allow users to grant, revoke, and audit
data access robustly.

6.4 Provenance

A fundamental characteristic of networks is that they look dif-
ferent depending on what device you view them from. A major
interaction challenge is creating intuitive ways of indicating the
provenance of the data, and helping users understand that the view
only represents the perspective of the capture device(s). In some
applications, however, the fact that the data represents the view-
point of a network-based observer can be a feature. For example,
the view looking down on the space from the cloud could show
what the local network looks like to the public internet, providing
a quick picture of the attack surface. In electronic warfare it would
helpful to see how the opponent’s systems view your RF behavior.
In consumer networks, if users could see their unencrypted brows-
ing activity flying through the air, and understood that any WiFi
device on that same network could see it as well, it might improve
general understanding of when and why to use HTTPS and VPNs
for protection. Questions around how to collect, represent, and
visualize provenance and network perspective information in an
intuitive way are a source of inspiration for additional research.

7 CONCLUSION

With the promise of localization and mixed reality technologies
finally coming to fruit, mixed reality network introspection is be-
coming a feasible approach to an intuitive, discovery-oriented, and
spatially aware understanding of networks. Our experiences de-
veloping and using XRShark, a real-time network visualizer, has
excited us by enabling new classes of insights, while also high-
lighting future research challenges. We hope community research
efforts in this direction will someday bring the dream of percep-
tual awareness of our immediate wireless environment to (mixed)
reality — rendering the invisible visible.
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